...
| Code Block |
|---|
pdf(file="scatterplot.pdf") csScatter(genes(cuff_data), 'C1', 'C2') dev.off() #How does this plot look? What is it telling us? |
The resultant plot is here.
Exercise 2a: Pull out from your data, significantly differentially expressed genes and isoforms.
...
| Code Block | ||
|---|---|---|
| ||
pdf(file="regucalcin.pdf") mygene1 <- getGene(cuff_data,'regucalcin') expressionBarplot(mygene1) expressionBarplot(isoforms(mygene1)) dev.off() |
The resultant plot is here.
Exercise 4: For a gene, Rala, plot gene and isoform level expression.
| Code Block | ||
|---|---|---|
| ||
pdf(file="rala.pdf") mygene2 <- getGene(cuff_data, 'Rala') expressionBarplot(mygene2) expressionBarplot(isoforms(mygene2)) dev.off() |
The figure is here.
Take cummeRbund for a spin...
...
| Expand | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||
|
The resultant graph is here.
| Expand | ||||
|---|---|---|---|---|
| ||||
Use csBoxplot function on cuff_data object to generate a boxplot of gene or isoform level fpkms. |
The resultant plot is here.
Exercise 6: Visualize the significant vs non-significant genes using a volcano plot.
...
| Expand | ||||
|---|---|---|---|---|
| ||||
Use csVolcano function on cuff_data object to generate a volcano plot. |
The resultant plot is here.
Exercise 7: MORE COMPLICATED! Generate a heatmap for genes that are upregulated and significant.
...
| Expand | ||||
|---|---|---|---|---|
| ||||
Use csHeatmap function on the up_gene_data data structure we created. But its a little tricky. |
The resultant plot is here.