Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
pdf(file="scatterplot.pdf")

csScatter(genes(cuff_data), 'C1', 'C2')

dev.off()

 
#How does this plot look? What is it telling us?

The resultant plot is here.


Exercise 2a:  Pull out from your data, significantly differentially expressed genes and isoforms.

...

Code Block
titleTo plot gene level and isoform level expression for gene regucalcin
pdf(file="regucalcin.pdf")
mygene1 <- getGene(cuff_data,'regucalcin')
expressionBarplot(mygene1)
expressionBarplot(isoforms(mygene1))
dev.off()

The resultant plot is here.

 

Exercise 4: For a gene, Rala, plot gene and isoform level expression.

Code Block
titleTo plot gene level and isoform level expression for gene Rala
pdf(file="rala.pdf")
mygene2 <- getGene(cuff_data, 'Rala')
expressionBarplot(mygene2)
expressionBarplot(isoforms(mygene2))
dev.off()

The figure is here.

Take cummeRbund for a spin...

...

Expand
Solution
Solution
Code Block
titleR command to generate box plot of gene level fpkms
csBoxplot(genes(cuff_data))
Code Block
titleR command to generate box plot of isoform level fpkms
csBoxplot(isoforms(cuff_data))

The resultant graph is here.

 

Expand
Hint
Hint

Use csBoxplot function on cuff_data object to generate a boxplot of gene or isoform level fpkms.

The resultant plot is here.

Exercise 6: Visualize the significant vs non-significant genes using a volcano plot.

...

Expand
Hint
Hint

Use csVolcano function on cuff_data object to generate a volcano plot.

The resultant plot is here.

 

Exercise 7: MORE COMPLICATED! Generate a heatmap for genes that are upregulated and significant.

...

Expand
Hint
Hint

Use csHeatmap function on the up_gene_data data structure we created. But its a little tricky.

The resultant plot is here.