I've made available some publicly available data containing single cell RNA-Seq data for 5k immune cells as well as a script that runs the Seurat workflow to define cell-type clusters in this data.

You can get the data, R script and results from ls6 here:

Script and Data locations
/work2/projects/BioITeam/projects/courses/rnaseq_course/day_5_single_cell_data
	Script: seuratTotalScript5k.mod.R
	Data (after preprocessing by cellRanger): filtered_feature_bc_matrix
	Results generated: results

#You can copy over the data to your directory:
cds
cd my_rnaseq_course
cp -r /work2/projects/BioITeam/projects/courses/rnaseq_course/day_5_single_cell_data .

The script we are going to run is an older version (Because Seurat on TACC is an older version). You can kick it off by doing the following:

Load modules and execute R script
module load seurat-scripts/ctr-0.0.5--r341_0

#OPEN AN IDEV SESSION:
idev -m 120 -q normal -A OTH21164 -r rna-seq-class-0613

R CMD BATCH seuratTotalScript5k.mod.3.4.R &

The script does the following (newer versions of the functions given here):

Generate Labeled TSNE Plot

new.cluster.ids <- c("CD4+ Memory Cells", "CD16+ and CD14+ Monocytes", "Regulatory T Cells", "CD8+ T Cells", "N/A (Cluster 4)", "NK Cells", "B Cells", "Monocyte Derived Dendritic Cells", "N/A (Cluster 8)", "N/A (Cluster 9)", "Monocyte Derived Dendritic Cells", "N/A (Cluster 11)", "N/A (Cluster 12)", "Megakaryocyte Progenitors")
names(new.cluster.ids) <- levels(pbmcTSNE)
pbmcTSNE <- RenameIdents(pbmcTSNE, new.cluster.ids)
DimPlot(pbmcTSNE, reduction = "tsne", label = TRUE)


Let's look at the results: 

Download this zip file and unzip it on your computer to view the files (Most computers will automatically unzip files).

results.zip