Annovar Annotations -- GVA2019
Annotating Variants: Introduction
As we've already seen, determining the presence or absence of a variant from NGS data is not trivial. It is software dependent and has inherent trade-offs between sensitivity and specificity. Inevitably, the number of putative variants in a real data set is very large; for example the first samples from the 1000 Genomes project typically found 0.1% variants (3 million variants), approximately 10% of which had never been previously observed (300,000 novel variants per individual.) False positive discovery rates are also typically very high at this stage.
Auxiliary data is often used to reduce putative variants without compromising sensitivity. Examples of auxiliary data include other samples within a cohort, existing SNP databases, gene or other feature annotations, and sample-specific information such as pedigree:
- By comparing genotypes across a set of samples and defining one as "reference" (or "wild type") enables other samples to be properly genotyped (i.e. 0/0 for hom. WT, 0/1 for het, 1/1 for hom. alt)
- Existing SNP databases such as dbSNP or the
vcf
files from the 1000 genomes project may be used to reject "common" variants under the assertion that "common" means "non-disease causing". - Gene annotations allow for codon analysis to determine whether mutations are synonymous, non-synonymous, nonsense, mis-sense, or create early stop codons.
- Pedigree information is particularly effective in mendelian autosomal recessive diseases; filtering for heterozygous mutations in parents and unaffected siblings which are homozygous in the proband usually yields a very small set of candidate variants.
Variant annotation tools perform the function of combining the raw putative variant calls with auxiliary data to add meaning ("annotation") to the variants. In many cases, the variant detection tool itself will add certain elements of annotation, such as a definition of the variant, a genotype call, a measure of likelihood, a haplotype score, and other measures of the raw data useful to reduce false positives. In other cases, the annotator will only require a vcf
file combined with other auxiliary data.
Because these tools draw in information from may disparate sources, they can be very difficult to install, configure, use, and maintain. For example, the vcf
files from the 1000 Genomes project are arranged in a deep ftp tree by date of data generation. Large genome centers spend significant resources managing these tools.
Pre-packaged programs
Annovar - one of the most powerful yet simple to run variant annotators available
Annovar is a variant annotator. Given a vcf file from an unknown sample and a host of existing data about genes, other known SNPs, gene variants, etc., Annovar will place the discovered variants in context.
Annovar comes pre-packaged with human auxiliary data which is updated by the authors on a regular basis. It is a well-constructed package in that there is one core program annotate_variation.pl
which can perform a variety of different types of annotation AND download the reference databases required.
The authors have also included a wrapper script summarize_anovar.pl
which runs a fairly comprehensive set of annotations automatically. You may be asking yourself "where can I find this awesome program?", but hopefully by now your assumption is that it is either on TACC or in the BioITeam folder. Generally speaking "programs" that consist of a series of scripts without many complex dependencies can easily be installed in the $BI folders. While the most popular programs will eventually be turned into modules. Despite its power, you can find this program in the $BI folders.
This next exercise will give you some idea of how Annovar works; we've taken the liberty of writing the bash script annovar_pipe.sh
around the existing summarize_annovar.pl
wrapper (a wrapper within a wrapper - a common trick) to even further simplify the process for this course.
Exercise:
First we want to move to a new location on $SCRATCH
Next, look at the code for our annovar_pipe.sh
command.