IGV Tutorial -- GVA2019
Overview
The Integrative Genomics Viewer (IGV) from the Broad Center allows you to view several types of data files involved in any NGS analysis that employs a reference genome, including how reads from a dataset are mapped, gene annotations, and predicted genetic variants.
Learning Objectives
In this tutorial, we're going to learn how to do the following in IGV:
- Create a custom genome database (usually used for microbial genomes) or load a pre-existing genome assembly (usually used for the genomes of model organisms and higher Eukaryotes).
- Load output from mapping reads to a reference genome.
- Load output from calling genetic variants.
- Navigate the view of the genome and interpret the display of this data.
Theory
Because NGS datasets are very large, it is often impossible or inefficient to read them entirely into a computer's memory when searching for a specific piece of data. In order to more quickly retrieve the data we are interested in analyzing or viewing, most programs have a way of treating these data files as databases. Database indexes enable one to rapidly pull specific subsets of the data from them.
The Integrative Genomics Viewer is a program for reading several types of indexed database information, including mapped reads and variant calls, and displaying them on a reference genome. It is invaluable as a tool for viewing and interpreting the "raw data" of many NGS data analysis pipelines.
Workflow 1: Viewing E. coli data in IGV
Data files
You can start this tutorial two ways:
- If you have a
mapping
directory with output from the Mapping tutorial and the SNV calling tutorial, then you should use those files for part 1 of this tutorial. You can proceed with either one alone or with both.
Prepare a GFF feature file for the reference sequence
IGV likes its reference genome files in GFF (Gene Feature Format). Unfortunately, our old friend&n